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CHAPTER I

INTRODUCTION

1.1 Description of Problem

IRO was asked to develop a method of preparing stockage lists for combat,

i.e., lists of repair parts to be kept on hand in case of war. The stockage

levels were to be based on assumed war time usage of the end items to be

supported. It was required that these end items should be 90% available

(not unoperational because of shortage of repair parts) during the 15-day

time horizon assumed for combat.

A standard cost-minimizing model called SESAME is available for this

purpose, but it has been programmed for use with only one end item type at

a time. Since it was expected that many of the parts would have application

to more tha. )ne of the end items, SESAME would be inappropriate. It was

decided to use the basic philosophy of SESAME, but not the multi-echelon fea-

ture, so as to simplif) the model to permit the multiple-application or part-

commonality problem to be managed. The loss of the ability to automatically

optimize the two echelons would be made up by assuming a constant fill rate for

upper echelon resupply in computing lower-echplon stock. While not optimal

this seemed to promise a smaller error than ignoring part commonality.

The supply system to be modelled is organized as follows. There is one

DSU, a second-echelon organization with both supply and maintenance missions

for the parts under consideration. A possibly large number, perhaps 30, ORGs

are supported by the DSU. The ORGs can merely replace parts on the end items

and cannot repair these parts under the war time Londitions we consider. The

ORGs are isolated from each other, but can acquire replacement parts in two

days from the DSU if in stock. If not, then the ene item neading the part

is assumed down for the entire 15-day horizon. All parts are assumed to be

in stock at the DSU for a fraction oZ time equal to the fill rate. All parts

are assumed to be essential to the operation of the end items to which they

apply. A part is ordered from the DSU as soon as it fails, and failure inter-

arrival times are distributed exponentially. Thus the end item availability

can be computed given the stockage level at ORG and the failure rates and

application information for the parts.

An additional complication was introduced to insure mobility and ease

supply management of the ORGs. In some cases a constraint was imposed on the
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number of different parts (i.e. lines) permitted on the ORG stockage list.

If the availability constraints could be met simultaneously with the lines

constraint, i.e. if the problem were feasible, this resulted in higher stockage

costs than when lines were not constrained. The requirement that the implemented

model must handle line constraints was another of the reasons that SESAME was

not used.

Technically, the problem to be solved might be described to be of the

multi-dimensional "fly-away kit" type, with a constraint on lines stocked, a

range of stock levels possible for each part, and multiple systems supported

with part commonality.

1.2 What Report Covers

Two alternate algorithms were developed to compute the stockage lists

for the ORGs. For the DSU stockage levels a standard algorithm is used, which

will not be discussed in this report. The purpose of this report is to present

and compare the performance of the two algorithms used to generate the lists

for the ORGs.

Briefly, the two algorithms are a Lagrangian heuristic approach and

a linear programming (LP) approach. The heuristic employs a search algorithm

to adjust the values of a set of Lagrange parameters, one for each end item,

until the availabilities are close to the target value. The LP approach

is actually an approximate solution to an integer program model, which was too

large to solve exactly. This procedure tries many combinations of stockage

levels of the different components until end item availabilities are all at

least equal to the target; if more than one solution satisfies the availability

(and other) constraints, the one which produces the lowest dollar value of

stock is chosen.

In this report we first present some definitions and background on avail-

ability needed in describing the algorithms. Next we present the LP approach

and discuss its implementation, followed by an explanation of the heuristic

and its implementation. The data base is then described, and finally the results

of the comparison.
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CHAPTER II

METHODOLOGIES

2.1 Computation of System Availability

Let B be the expected number of backorders for part i at the ORG at
i

a random point in time; i.e. if B (t) is expected number at time t, then

for a 15-day horizon,

Bi - Bi(t) dr/15 (1.1)

Computation of Bi is described in Appendix A; clearly it is a function

of the stockage level of part i as well as demand for part i and resupply

times from DSU to ORG.

Let Fij be that fraction of demand for part i caused by a randomly

chosen system of type J. For example, let system type 3 refer to the M60A1

Lank, and suppose part i is used only on the M6OAl. If an organization

supports 50 M60AI's, then F13 ' 1/50 = .02. Now suppose that part i is

also used on a weapon system of type 4 and that the type 4 system accounts

for 1/4 of the part's expected demand. Then F13 - (3/4)(1/50) = .015.

Defining Bij as the expected number of backorders of part i for a

randomly chosen system of type j at a random point in time,

Bij =(Fii)(Bi)  (1.2)

Further, if only one part of type i can ever f'il on a system of type J,

B i must be less than one, and in fact equals the probability of a backorder,

e.g. if Bij = .02, this means 98% of the time there are no backorders and

2% of the time there is I backorder (.02 x I - .02 backordered). It is

assumed that B can be used to represent the probability part i is available
ij

for system J, recognizing that if the number of applications of part on system

exceeds one, this is only an approximation. LMI [5] shows how to make a more

precise calculation which adjusts for number of part i applications per system,

but requires some additional assumptions.

Defining A as the percent of time a randomly chosen system of type j

is available - or at least is not unavailable for lack of a part - we have

A = M 1-Bij) (1.3)
i lB~



This formula assumes there is no redundancy, and each part is critical, so

that the system is operable only if no parts are missing.

A more precise expression for A would be:

A1 - n (l-FijBit)dt/15 (1.4)
0 i

2.2 LP Problem Formulation

A key to the linear programming approach is that only a limited number

of stock levels, besides 0, are considered for each part. The LP chooses among

these levels. The subscript,t, is used below as both an index and as the actual

quantity to be stocked.
t h

Let xik refer to stockage of part i at the t level; i.e. x i equals 1 if
part is stocked at that level, and 0 if not. Let C. be the inventory investment

(quantity times unit price) and Bi4it the backorders attributed to system J when

part i is stocked at the Zth level. Let TAR be the availability target for

system J.

We then have this integer programming problem for the decision variables

xit:

Minimize Z xi t C i (2.1a)

Subject to
EZ log(l-Bi 1 )xi2  > log TARJ for all J (2.1b)

Z xit =1 for all i (2.1c)

where xi. = 0 or I

Condition (2.1b) is derived by taking the log of the condition that achieved

availability must at least equal the target; see equation 1.3 for achieved

availability. Condition 2 .1c insures that exactly one level is chosen for each

part, possibly xi0 denoting 0 stock with backorders Bij0 . Note that if part i

is not used on system J, B is always 0.

The integer programming problem may be given an alternative form which

eliminates explicit consideration of the 0 levels, xi0

Minimize 7 x C (2.2a)

i 2.>0 i
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Subject to

E E x itlog (l-Bij) - log (l-Bijo)]> (2.2b)
i k>0

log TARj - E log (l-Bij O)
i

>0 (2.2c)

To see the equivalence between (2.1b) and (2.2b), note that in (2.2b):

If xit= 1 for some Z>0 then log (l-Bij0 ) is on both sides of the

equation, and can be cancelled out.

If xit = 0, for all k>0, then log (1-Bijo ) is subtracted from the

R.H.S., which is equivalent to adding it to L.H.S. giving the same result as

(2.1b) with xi£> 0 for t-0.

If there is a constraint on the number of lines which may be stocked,

a third condition is added to (2.2):

Z < MAXLINES (2.2d)
i k>0

As an integer programming problem (2.2) may be time consuming to solve.

However, it may be solved as a continuous linear program with quite acceptable

results as shown in section 2.3 of this report. There are two reasons for this.

One is that the target availability constraints are not rigid - if in rounding

non-integer answers down there is a minor lcF in availability, e.g. less than

1%, this is acceptable to the model users. The second reason is that the

number of non-integer levels will be small relative to Lhe size of the stockage

list and in fact cannot exceed the number of weapons systems, or that number

plus 1 if MAXLINES is an active constraint. This is shown in Appendix C.

Thus, in a typical problem with 30 weapon systems, and about 250 lines stocked,

rounding would not affect more than 31 : 250 or typically about 10% of the

parts.

2.3 LP Implementation Considerations

The linear program described in the previous section was solved using a stan-

dard simplex LP code, APEX II. The number of columns, i.e. solution variables
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x in the previous section, depends on the precision needed. Of course,

there must be a compromise between accuracy and problem size. If the number

of candidate non-zero stockage levels is constant for all parts, then the

number of columns equals the product of this number and the number of parts.

This is what was done in order to simplify problem setup. In the chapter

on results it is shown that eight stockage levels gave acceptable answers

at not too great a cost of running the algorithm.

The trial stock levels (designated as t in the formulation above) are

selected as follows:

Let m = expected demand

N = number of trial levels desired

Then if m + 8Jii < N 1,2 .1,2... ,,

if m + VJi > N [i f(m+81 f)/IN] (k)

where k =1,2,... ,N

and the N values are rounded to the nearest integer.

Since 0 < x it< 1 may be non-integer, the stockage level is calculated as

which is then further treated below.

Although the number of non-integer levels found by the LP code will be

few, they must still be disposed of in some way to yield a feasible (if slightly

non-optimal) solution. This is accomplished by a rounding rule. Each stockage

quantity, S,, is adjusted to the nearest integer. This rounding could cause

the final availability to be lower than the target in some cases. If S I is

less than one but greater than zero, it must be decided whether or not to

stock the part. The rounding rule was modified in this case to eliminate

the part only If it does not cause excessive reduction of availability. The

rule also considers the cost of the part: If rounding down a fractional

stockage value less than .5 would not reduce any end-item availability by

* more than .005, and rounding up would increase cost by more than $50., then

round to zero; otherwise stock one unit. Thus, to prevent a single part from

reducing availability by one-half percent we would stock one when simple

rounding would have stocked zero. Cheap parts are also stocked. In addition
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a check is made on the overall availability reduction; a part will be stocked

rather than allow the cumulative availability to drop by more than one percent.

In order to run the LP code, a data input deck must first be prepared.

To facilitate this job a program was written that gets data for each part

from the data base, computes the terms of the sums on both sides of expression

(2.2b), and writes out the card images in the correct format for APEX II.

2.4 Lagrangian Approach

Let the X be a set of non-negative real numbers; let S and B (Si) be

the stockage quantity and backorders given that stockage for part i, and let

UPi be the unit price of item i. Let ySi) be a function with value 1 if

S > 0, else value 0.

The Lagrangian approach involves solving problems of the form:

Maximize: - E SiUP i - (Si) + T E A.log (1-B ij(Si (4.1)
i J i

or equivalently:

Maximize SiUPi -XYiS -L EX log (1-BJ(Si)) (4
o j.J)

This is a separable sum of concave functions of the S. and hence easily solved.
1

Note that the objective in maximizing is to reduce costs and lines stocked and

increase availabilities. If there is no line constraint, X = 0.

By a Theorem of Everett [1], it is known that if F maximizes (4.1)

for some set of X with resulting system avaiiabilities {A.3 , then there

is no cheaper solution possible with availabilities tA.} such that for all j,
r J

Aj J>A i Hence if by a manipulation of the Xj we could geL a solution such

that A = TAR, for all j this must be the least cost solution. In general,

because of the discreteness of the Si, there is no solution with all Aj = TARS.

In fact, even if such a solution exists there is no guarantee that there are

Aj which will result in that solution. (This is termed a duality gap). This

would occur, for example, if there were two items with identical unit price

and failure characteristics and in order to just meet the target availability

only one should be stocked. A maximization of (4.1) must result in both items

with identical characteristics stocked, or both not stocked. A duality gap

would also occur if stocking a less cost effective part was preferred because
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stocking the more cost effective part raised availability "needlessly" above

target.

In the next section a heuristic is described which attempts to find AJ
such that the resulting A are as close as possible to the targets. While

this heuristic is logically based on the characteristics of the problem, no

general theoretical claims can be made for it. The empirical tests of its

effectiveness are presented in section (3.1).

2.5 Lambda Search Routine

Motivation. If there were only one system, and no constraint on lines

stocked, a standard procedure would be:

a. Start with some A, solve (L.l) and compare availability, denoted

A(A), to target availability.

b. If availability is high, lower A, and visa versa, since nvail-

ability is a monotonic function of A.

c. Once availability is bracketed, i.e. A(I) < TAR and A( 2) > TAR,

perform a binary search until the bracketing A's are sufficiently close to-

gether.

Generalization. If the procedure just described were applied to a problem

with two systems and target availabilities of 90%, we might find:

System 1 System 2

Iteration AA A 2 A2

1 10 88% 30 87%

2 20 96% 60 92%

3 15 94% 45 88%

4 12.5 93% 52.5 91%

5 11.25 92% 48.75 89%

On each iteration we update and X2 independently and simultaneously and

then solve 4.1 again to get the corresponding availabilities. Unfortunately,

it may be true that if X is in the interval 148.75, 52.5], then for any value

of Al 10, A1 '91%, the results of iteration I not withstanding. This could

occur if there were a part used on both systems. Referring to (4.1), stockage

* for this part will depend on both XI and A2 and therefore A will depend in

part on

The heuristic attempts to keep the search on track by recalibrating every

9
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so often; e.g. at iteration 6, the bracketing X values for system 1 are 10

and 11.25 and for system 2 they are 52.5 and 48.75 with 10 and 52.5 the values

found first. In recalibration X1 1 10 and X2 = 52.5 are tried.

Thus, the heuristic is a single system search procedure with the recalibra-

tion to account for possible interdependence.

If there is a line constraint, X0 (cf 4.1) is found implicitly. Suppose

the constraint is 240 lines, and that as a result of an iteration 300 lines

qualify for stockage. The items are ranked by their contribution to the

objective function, i.e. by

Value i - SUP i + E X Alog (l-Bij (Si) - log (l-Bij (0))}

The top 240 are considered stocked, and the corresponding system availabilities

found.

Implementation Details. The search process ends when the search process

for each system has ended. This occurs if:

a. Availability is bracketed and bracketing lambdas are within

1% of each other.

b. Availability is not bracketed but availability is found which

exceeds target by less than 1%, or underaciiieves target by less than 0.3%.

Calibration is done every 5th iteration. When bracketing lambdas have

not been found and availabilities are too high, new labmda is set to 50% of

old lambda if availability is off by more than 5%; otherwise it is set to 90%

of old. Respective figures when availability is too low are 200%, 111%.

Additional specifications for the search routine are in Appendix D.

2.6 Alternative Search Routines

We first briefly summarize an approach developed by Logistics Management

Institute [5]. In the single system case they first compute backorder levels

for all potentially optimum stockage levels for all parts. All units of stock

are then ranked by their marginal contributions to system availability per

dollar spent to buy the unit. In determining marginal contribution, stocking

1 unit of part i is compared to not stocking part i, stocking 2 units of part i

is compared to stocking only 1 unit, and so on. LMI then adds units in order

of their rank until the desired system availability is achieved.

When there are multiple systems, the systems are first treated indepen-

dently. If part i is common to systems 1 and 2, it appears in the ranked
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lists of both systems, with backorders and cost for each stockage level

allocated based on percent of demand accounted for by each system. After the

solutions for each system are obtained, a heuristic is used to make adjustments

if the stockage level chosen for part i on system 1 is not the same as the

level chosen for system 2.

The LMI approach has not been applied to problems with constraints on

the number of lines stocked.

Given an explicit Lagrangian approach, a common procedure to find appro-

priate lambda values is to make use of the dual problem (cf Lasdon). This

procedure uses the dual gradient (or subgradient) as a search direction. New

lambda values are obtained by "stepping off" from the old lambdas in this

direction. If the step size paramaters are suitably chosen, this procedure

has been proven to converge. Under such a procedure, each new set of {A}

accepted provides a better (lower) upper bound on solutions of (4.1) which

will also satisfy the system availability constraints. As in linear pro-

gramlng, we are thereby protected against cycling back to previous solutions.

Unlike linear programing it can be difficult to find a better solution at

each iteration.

e l
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CHAPTER III

EMPIRICAL COMPARISONS

3.1 Data

Three data bases were used for testing the models. Two consisted of

data from the Materiel Readiness Commands (MRCs) for two companies, a mechanized

infantry company and a tank company. The end items and necessary end item data

for each company were taken from mission profiles provided by TRADOC.

The third data base was created to provide a smaller source of data

with a higher degree of commonality. A smaller data base was sufficient for

model comparisons and made computer runs faster and easier. The commonality

apparent on the MRC data consisted mostly of a few pairs of weapon systems

with largely identical parts. This did not test the capacity of the models

for handling more intricate situations where one item might appear on more

than 2 weapon systems, or weapon systems have some but not all items in common.

The manufactured data base consists of 215 part applications for 5 end

items. 123 of these applications are common to (at least) 2 of the end items;

18 of them to 3. (The number of partc (regardless of application) is 151.)

The 5 end items were taken from TACOM data. However, part applications

were added to and deleted from each weapon system to induce the desired degree

of commonality, hence the original end item identification is meaningless.

3.2 Comparison of Algorithms

Three questions were studied:

a. Are the results of the two algorithms comparable?

b. How do the computer costs differ?

c. How many levels are sufficient in the LP algorithm?

For the first question, we used the final interpolated, rounded solution

levels of the LP algorithm and computed end item availabilities, and compared

these with availabilities computed (in the same way) by the heuristic algorithm

for its list. The LP algorithm usually resulted in stockage costs a few percent

above those of the heuristic algorithms. The costs were always within three

percent. The results are shown in a table below for the three different sets

of data. Results are also broken out for the unconstrained and constrained

cases, i.e. whether the number of part lines was prevented from exceeding

12



some value (110 for COMMON data base, 250 for INFANTRY, and 332 for TANKS).

COST/LINES/TIMES*

HEUR LP

COMMON-UN $1353/135/112 $1386/136/186

COMMON-CON $15257/118/560 $15513/119/191

INFANT-UN $ 7072/289/262 $ 7052/287/746

INFANT-CON $ 7857/256/** $ 7914/256/785

TANKS-UN $19189/434/792 $19368/430/1335

TANKS-CON $22460/331/** $22968/332/1436

LP Time is for algorithm only. Add about 20% setup.

Needed manual intervention as hit time limit.

The third number, computer time, in each entry is the number of

"system seconds", a weighted measure of computer resource usage. The current

day rate is about $260 per hour; this represents the resource-weighted

fraction of allocatable costs the user reimburses the ARRADCOM S+E Computer

Facility. It is probably a serious understatement of the commercial value

of the data processing usage.

As can be seen the LP algorithm tends to use considerably more computer

time than the heuristic for the unconstrained case. Note that the times for

the LP algorithm are understated because they do not include the additional

data set up and result processing. This is estimated to total about 20%

of the times given for the large data bases and 80% for the small. The

constraint on part lines hardly increases the time required by the LP algorithm,

but causes a marked increased in the heuristic because many iterations are

needed. In fact, for the large data bases, manual intervention was required

and no time could be estimated.

The LP algorithm is feasible only because it limits attention to a few

stockage levels from the infinity of possible values. As described in Chapter II

we have implemented the algorithm using a fixed number of levels for each part.

13
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The higher the demand race, the more these levels spread out. For most of the

parts, the demand rates were so low that complete coverage of levels was

achieved up to a large maximum. For a few high-demand parts, however, the

stockage levels were spread out; and thus the optimal value may not have been

tried.

Since a continuous LP model was used, non-integer stockage levels were

obtained for a small number of parts. Linear interpolation was used to force

integer solutions in these cases; this introduced additional departure from

optimality. These two effects are possibly the cause of the slightly better

cost performance of the heuristic as compared to the LP algorithm. However,

cost results between LP and heuristic are not completely comparable because

achieved end item system availabilities differ. In running the heuristic,

availabilities of 89.7% were considered acceptable, since this would be true

if the heuristic were implemented, and this leeway permits the heuristic to

run faster. The LP solution always gave availability of at least 90%, although

after rounding availability could drop. A detailed comparison of availabilities

for the cases rui is in Appendix B.

It was found in earlier work that four stockage levels gave significantly

less optimal results than eight levels. 11.1 table below shows that eight and

sixteen levels achieve about the same in terms of optimality. The Infantry

data was used to make two unconstrained LP runs, one with eight levels, the

other with sixteen. The availabilities were the same within two or three

significant digits:

Number of Levels 8 16

Number of Parts Stocked 288 287

Stockage Cost $7879 $7862

Only very limited experimentation was done on the effects of interpolation.

This did occasionally introduce a large cost increase; for example in the case

of an expensive part which the LP algorithm tried to stock in a fractional

quantity. No conclusions were drawn from this work.

3.3 Possible Additional Research

The following ideas to improve the LP algorithm seem promising:

a. Variable stockage levels, using more levels for higher demand

or higher priced parts.

b. An integer programming code.
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At the very least, use of an integer program code would identify how much

cost is increased by using the continuous approximations and rounding.

Just as the LP chooses between a limited number of stockage levels for

each part, so could the heuristic. The advantage would be an increase in

computational efficiency, although whether this would make treatment of a
constraint feasible is not clear. Certainly, it would not be a good approach

if there were more than one constraint, for example a total weight as well as

number of lines. Other variants for running the heuristic would compute levels

as they were needed, and store them; at any given time values stored would

include the optimum for Lagragians less than or equal to the highest tested

to date.

The inherent cost effectiveness of both rules might have been better

compared by modifying the LP rounding rule and heuristic to always achieve

at least 90%~ availability. The disadvantage is that such a rigid specifica-

tion, with no tolerance, was not part of our problem.

3.4 Other Considerations

With a constraint on the number of lines the problem may not be feasible.

It is possible to run the heuristic in an unconstrained mode but with a high

fixed cost charged per line stocked, e.g. $100,000. The number of lines in the

solution constitutes a reasonable minimum practical list size. Similarly, a

cost-per-part-stocked could be added to the objective function of the LP formu-

lation for the same purpose. Comparable results can be achieved by LP by using

parametric programming.

The LP approach could be extended to two echelons. For each item different

budgets would be tried, analogously to the x i of section 2.2, and a standard

algorithm would be used to allocate the budget among the two echelons and

compute the corresponding minimum ORG level backorders. If there is a line

constraint, alternative item budgets with zero ORG level stockage would also

have to be tried.
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APPENDIX A

BACKORDER COMPUTATION

We are interested in the expected number of backorders over a 15-day

period, given a resupply policy with resupply time of two days. The number of

backorders depends on the stockage level at the beginning of the 15 days, the

expected demands in the period, and the DSU fill rate, the probability of

getting resupply in two days.

Let S = stockage level

D - demand rate per day

F = fill rate

T = resupply time if DSU not in stock ( 15 days)
(this will be called "no resupply" below)

R = resupply time if DSU in stock (2 days)

To calculate the average backorders over 15 days, look at the period from

3 to R, during which there is no resupply, and the period from R to T, during

which resupply occurs.

______time

0 R T

At time 0, the stock on hand equals the quantity provided by the PLL. For the

first R days this stock is depleted at an average rate D per day. After day R,

resupply occurs at the same rate-as demand, -and thus the expected stock level

remains constant over the remaining T-R days.

Assume the following notation:

BACKO(S,t,D) - expected number of backorders at a point in time t

EVALNR(S,T,D) - expected number of total time weighted backorders
in T, assuming no resupply

EVALRE(S,T,D) = expected number of time weighted backorders in T,

assuming resupply

Then

EVALRE(S,T,D) - (probability of no resupply) x (backorders with no

resupply) + (probability of resupply) x (backorders with resupply).

For the expected backorder computation with resupply, no resupply is received

in the first R days, so the backorders for this period are as for no resupply,

but for R rather than T days - EVALNR (S,R,D). For the remaining T-R days,

the expected backorders are constant at the day R level = BACKO(S,R,D).

16



Therefore,

EVALRE(S,T,D) = (1-F)[EVALNR(S,T,D)]

+ F [EVALNR(S,R,D) + (T-R) BACKO(S,R,D)]

We assume demands occur according to a Poisson probability distribution.

p(x;Xt) = prob of x demands in time t, given a mean rate of X per

unit time t

P(r;Xt) - . p(x;Xt) - prob of r or more demands
x-r

BACKO(S,t,X) - E (J-S)p(J;Xt)
J-S

= t P(S-l;xt) - SP(S;Xt)*

BACKO is the expression for backorders at a random point in time t for a con-

tinuous inventory system with random demands, where it is assumed that an order

is placed each time there is a demand. S is the inventory position and X

is the demand rate per day.

To get the expected number of backorders over 15 days (T), we integrate

BACKO over t from 0 to T. IT

EVALNR(S,T,X) = X t P(S-1;Xt)dt-SJ P(S;Xt)dt

0 0

= N\ [(T 2 /2) P(S-1;XT) - (1/2X 2 )(S)(S-I)P(S+ I ;XT)]**

- S[TP(S;XT) - (S/X)P(S+1;XT)]

= (T 2/2)P(S-I;XT) - STP(S;XT) + (S(S+1)/2X)P(S+1;XT)

0 *Equation (4-112), page 205, Hadley & Whitin

Equation 19, page 443, Appendix 3, Hadley & Whitin, used twice to evaluate
the integrals.

17



APPENDIX B

AVAILABILITY COMPARISON

INFANTRY

END UNCONSTRAINED CONSTRAINED

ITEM HEURISTIC LP ALGORITHM HEURISTIC LP ALGORITHM

1 .9014 .9014 .9033 .9021

2.9061 .9058 .9026 .9024

3 .9090 .9090 .9119 .9090

4 .9002 .9022 .9047 .9006

9 .9056 .9053 .9037 .9039

10 .9011 .9019 .9011 .9019

11 .9306 .9306 .9306 .9306

12 .9601 .9601 .9854 .9601

13 .9029 .9012 .8995 .8992

14 .9046 .9021 .9012 .9028

15 .9007 .8983 .9311 .9319

17 .9565 .9565 .9565 .9565

18 .9038 .9038 .9038 .9038

19 .9255 .9106 .9255 .9106

23 .9092 .9092 .9092 .9092

25 .9092 .8997 .9092 .8997

26 .9123 .9154 .9101 .9131

27 .9368 .9298 .9368 .9298

COST $7072 $7052 $7857 $7914

COMMON ITEM DATA BASE

1.9039 .9039 .8995 .8995

2 .8967 .9024 .8979 .8979

3 .9021 .9028 .8971 .9028

4 .9090 .9053 .9062 .9020

5 .8987 .9048 .8995 .9007

COST $13537 $13866 $15257 $15513
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ARMOR

END UNCONSTRAINED CONSTRAINED
ITEM HEURISTIC LP ALGORITHM HEURISTIC LP ALGORITHM

1 .9053 .9053 .9119 .9031

2 .9032 .9032 .9050 .9046

3 .9021 .9021 .8955 .9032

4 .9083 .9028 .9119 .9000

5 .9009 .9009 .9078 .9068

8 .9058 .9058 .8988 .9050
9 .9002 .9002 .9010 .8984

10 .9192 .8835 .9301 .9192

11 .9614 .9614 .9922 .9922

12 .9062 .9058 .9181 .8993

13 .9020 .9007 .8980 .8972

14 .9078 .9021 .8981 .9012

15 .8986 .9013 .8993 .9008

16-19 .9717 .9718 .9719 .9718
20-22 .9341 .9226 .9044 .9031
29 .8994 .8994 .9001 .9004

30 .9910 .9910 .9944 .9947

31 .9269 .9269 .9615 .9269

32 .9506 .9506 .9861 .9506

COST $19189 $19368 $22460 $22968
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APPENDIX C

UPPER BOUND ON NON-INTEGER SOLUTIONS IN LP

Let W be the number of weapon systems, and P the number of parts.

Assume, for the moment, there is a line constraint. There are therefore,

(referring to Section 2.2) W + 1 + P constraints.

We use a well known result of linear programming (cf Hadley): If

there is an optimum solution, there must be a basic optimum solution. Since

the rank, r, of the coefficient matrix cannot exceed the numbe. of constraints,

and a basic solution has only r non-zero variables (or even fewer if the basic

solution is degenerate), an optimum basic solution to our problem has at most

W + 1 + P positive variables. The LP code provides basic solutions.

From the above, we can infer that at most W + 1 parts may have non-integer

solutions. Consider the P constraints of the form:

(Cl) Z X i + k =1

where k is a slack variable.

Then for each i in a basic, or any. other, solution

(1) Some x it 1 -~ exactly one of variables in (Cl) is # 0

(2) All x it 0 -~ exactly one of the variablesin (Cl) is 0,

namely k i.

(3) An x1t >" 0, but not equal 1 -, two or more of the variables

in Cl are 0 0, since all variables must sum to 1.

Thus, for every part there is at least one non-zero variable

in the solution, and two or more if the part is not stocked at an integer

level (case 3).

Just as there are slack variables in Cl, there are slack

variables in the W constraint equations relating to weapon system availability

and in the line constraint. Let S be the number of these slack variables

which are non-zero in the final solution, and let NI be the number of parts

for which there are positive non-integer x.

Then

(C2) S +2 NI +(P -NI) <W+ I+ P

It can be shown that in fact at most k plus two x i will be non-zero.
20



The left hand side are the total non-zero variables, and the right hand is

the number of variables in the (basic) solution.

From (C2), by algebra,

(C3) NI < W + 1 - S

This, therefore, bounds the number of non-integer stock levels in the LP

solution.

If there is not a line constraint, we can derive:

(C3') NI < W - S
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APPENDIX D

SEARCH ROUTINE SPECS

When SEARCH is called, it has stored in memory for each system.

xOLD 
AVOLD

OLDEST AVOLDEST

which resulted from previous iterations. A OLD, which resulted in a system

availability of AVOLD was found in the last iteration, but AOLDEST could

have been several iterations ago.

Input to SEARCH is a ACURREN T and AVCURRENT for each system, from current

iteration.

SEARCH has two functions: update the stored A's and availabilities

with the current values input. Determine a (different) ANEW to be evaluated

for each system.

See diagram for flow.

Update Logic

If ACURRENT resulted from calibraticin rn (see below) AOLDEST drops out.

If AVOLD and AVOLDEST are on same side of target availability, e.g. both

above it, AOLDEST drops out.

If AVOLD and AVOLDEST bracket target, replace whichever one is on same

side as AVCURRENT i.e. make sure the two availabilities stored after update

also bracket target.

Relabel, as necessary, after update so AOL D always has value which was

input to search routine, while AOLDEST has what used to be either AOLD or

xOLDEST'

Choice of ANEW

Calibration Run: every 5th run set NEW = A OLDEST. This is done

because AVOLDEST may no longer be obtained if A OLDEST is rerun (see Section 2.5

of main report).

Target Is Not Bracketed: Multiply XOLD by FAC(>l) if AVOLD is below

target or I/FAC if AVOLD is above target. To get FAC

If less than 6 iterations have been done set FAC = 10, or if more,

set FAC 2.
22
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But if tAVOLD - TARf < 5% set FAC = 1.1 and if IAVOLD - TARI < 1%,

set FAC = 1, i.e. XNEW X OLD*

Target Is Bracketed: A test is made to see ifIXOLD - A OLDEST I  Min

(AOLD' A OLDEST) is less than 1%. If it is, A's are sufficiently close:

set NEW to AOLD or IOLDEST, depending on which gave an availability

above target. Else, use a binary search; i.e. ANEW = 1/2 (XOD + XOLDEST).

SEARCH PROCESS

AVCURR

UPDATE

NEW

D' AVOLD 7LOGIC
OR

0 ,_LDEST

AAVV

CURR

GENERATOR ANEW

For experimental runs, to get better compatibility with LP runs, a FAC of

1.02 was used if AV < TAR and -TARI > 0.37.
OLD23A0.3%

OLD R an J~y -TA
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